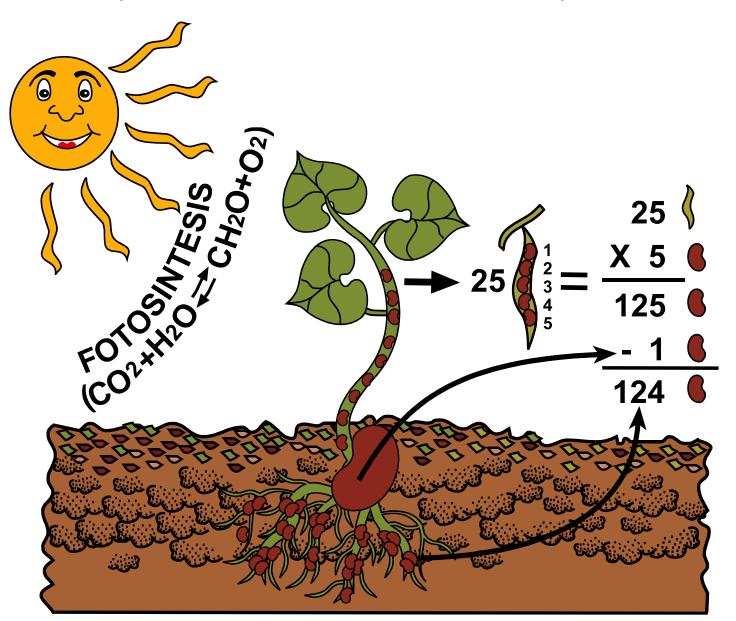
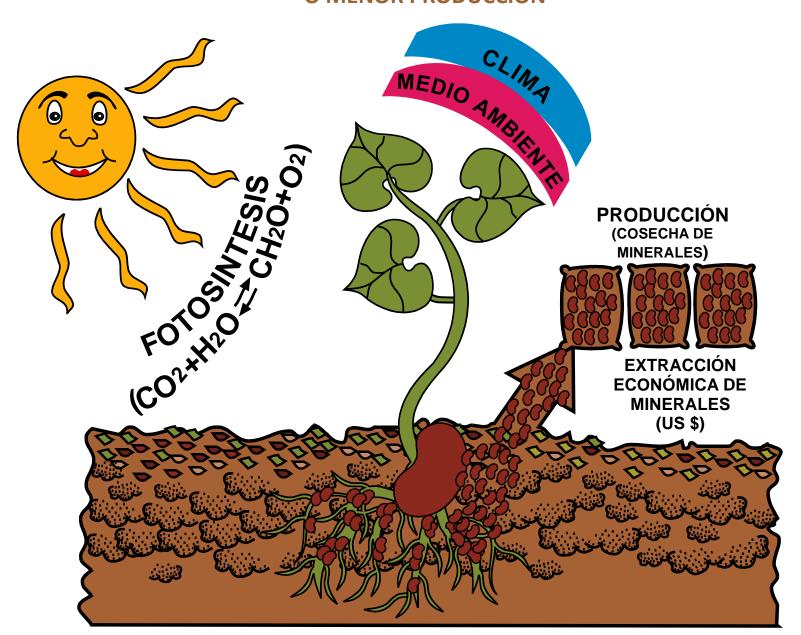

PANES DE PIEDRA



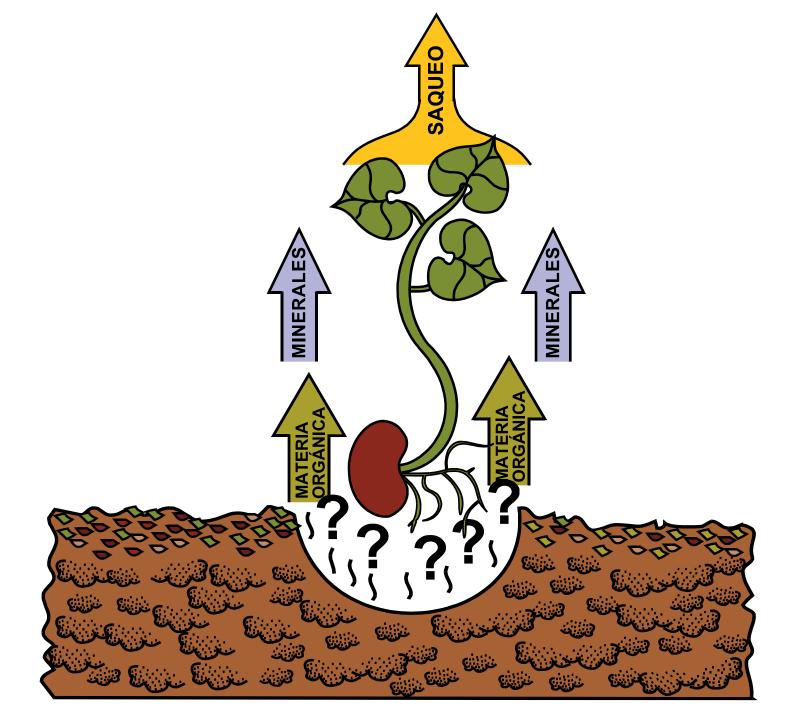
LA TIERRA: NUESTRA ALCANCIA NATURAL DE MINERALES ANIMADOS

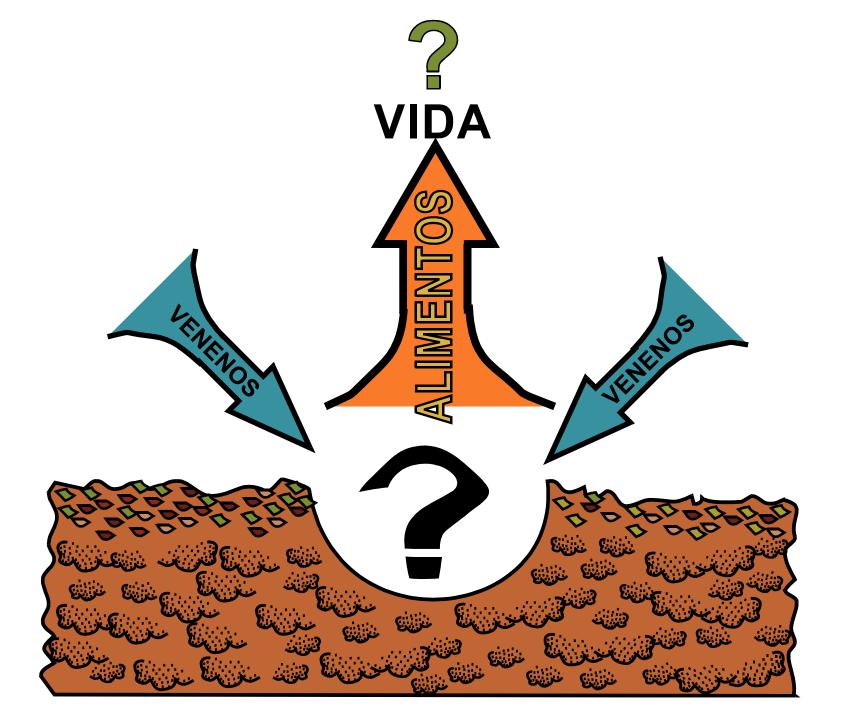

LA TIERRA ES COMO UNA ALCANCIA NATURAL DE MINERALES VIVOS A LA QUE HAY QUE CUIDAR

(UNA CUENTA DE AHORROS MUY DINÁMICA)

Jairo Restrepo Rivera Fundación Juquira Candirú

DE LA DINÁMICA DE LA ALCANCIA NATURAL DE LOS MINERALES VIVOS DEPENDE UNA MAYOR O MENOR PRODUCCIÓN

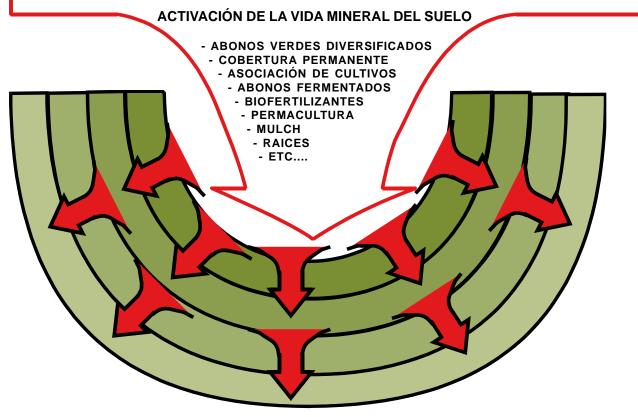

Jairo Restrepo Rivera Fundación Juquira Candirú

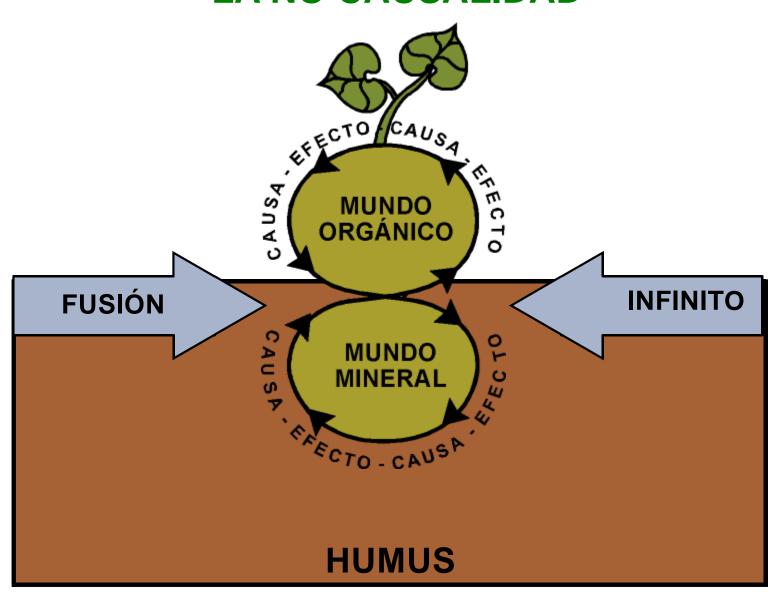


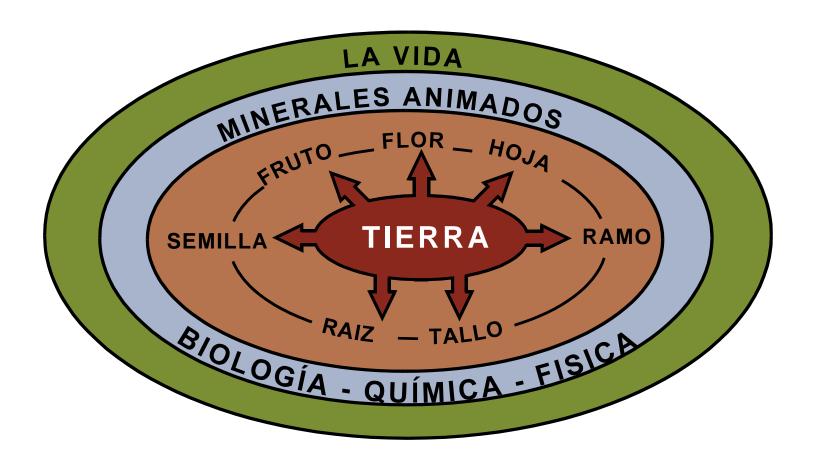
(-)

Fundación Juquira Candirú Jairo Restrepo Rivera

AGOTAMIENTO Y DESTRUCCIÓN DE LA ALCANCIA NATURAL DE MINERALES (ES COMO ROMPER LA ALCANCÍA O MATAR LA GALLINA DE LOS HUEVOS DE ORO)

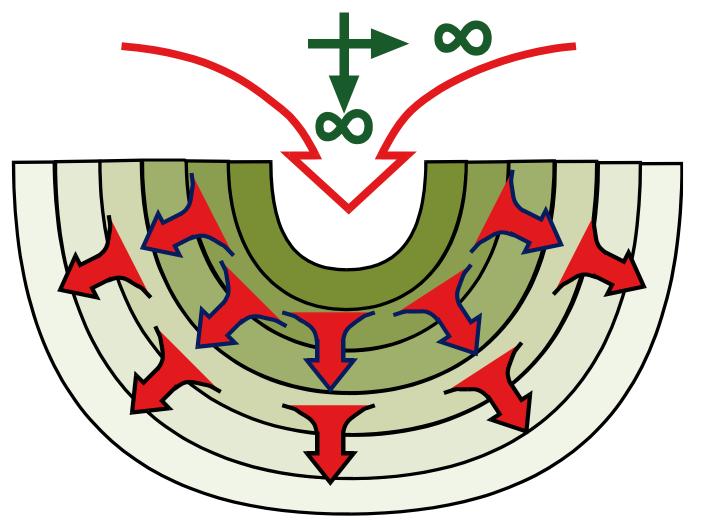


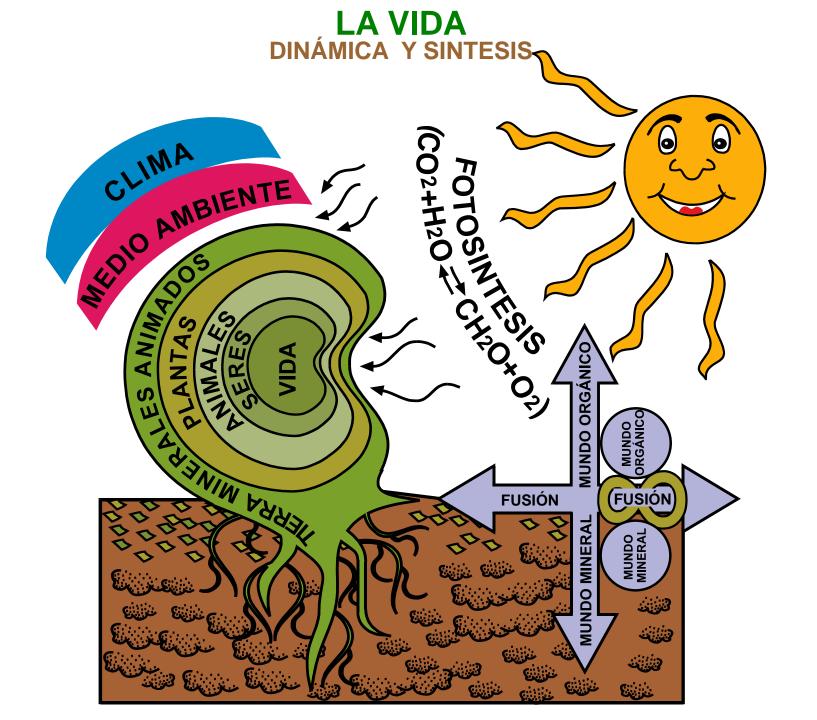

AGRICULTURA ORGÁNICA


ACTIVACIÓN Y REPOSICIÓN BIOLÓGICA DE MINERALES

- COMO ENGORDAR LA ALCANCIA
- COMO DARLE MAIZ A LA GALLINA DE LOS HUEVOS DE ORO

"LA NO CAUSALIDAD"





AGRICULTURA ORGÁNICA

ES UNA INVERSIÓN EN TODOS LOS SENTIDOS

INFINITO DIMENSIONALES

La palabra utilizada para denominar la tierra, al principio de las lenguas indoeuropeas, hace miles de años (nadie sabe exactamente cuántos) era dhghem. A partir de esta palabra, que no significa más que tierra, surgió la palabra humus, que es el resultado del trabajo de las bacteria del suelo. Y, para darnos una lección, de la misma raíz surgieron humilde y humano.

Lewis Thomas 1913 - 1993

LISTA INCOMPLETA DE ELEMENTOS CONSTITUYENTES DE LAS PLANTAS

ELEMENTO	VALOR MEDIO EN Mg	ELEMENTO	VALOR MEDIO EN MILIGRAMOS
OXÍGENO- O	70.000	COBRE- Cu	0,2
CARBONO- C	18.000	TITANIO- Ti	0,1
HIDRÓGENO- H	10.000	VANADIO- V	0,1
CALCIO- Ca	300	BORO-B	0,1
POTASIO- K	300	BARIO- Ba	<0,1
NITRÓGENO- N	300	ESTRONCIO- Sr	<0,1
SILICIO- Si	150	CIRCONIO- Zr	<0,1
MAGNESIO- Mg	70	NIQUEL- Ni	0,05
FÓSFORO- P	70	ARSÉNICO- As	0,03
AZUFRE- S	50	COBALTO- Co	0,02
ALUMINIO- AI	20	FLUOR- F	0,01
SODIO- Na	20	LITIO- Li	0,01
HIERRO- Fe	20	YODO- I	0,01
CLORO- Cl	10	PLOMO- Pb	<0,01
MANGANESO- Mn	1	CADMIO- Cd	0,001
CROMO- Cr	0,5	CESIO- Cs	<0,001
RUBIDIO- Rb	0,5	SELENIO- Se	<0,0001
CINC- Zn	0,3	MERCURIO- Hg	<0,0001
MOLIBDENO- Mo	0,3	RADIO- Ra	<0,000.000.000.001

- FUENTE: A.P. Vinagradov, Rússia. Tomado de documento inédito. "Cartilla de
- la remineralización de los alimentos", Pinheiro Sebastiao. Fundación
- Juquira Candiru. Porto Alegre. Rs. Brasil. 2002.

COMPOSICIÓN DEL MB-4 HARINA DE ROCA (resultado de análisis 2256/90) en mg/kg

LITIO Li	50	ODISO Na	122.000	POTASIO K	13.600
ALUMINIO Al	96.000	CESIO Cs	< 50	MAGNESIO Mg	77.000
CALCIO Ca	39.000	ESTRONCIO Sr	200	BARIO Ba	420
TITANIO Ti	3.900	CIRCONIO Zr	800	CROMO Cr	1.100
MANGANESO Mn	780	HIERRO Fe	60.000	COBALTO Co	78
NIQUEL Ni	78	PLATA Ag	5	COBRE Cu	30
RENIO Re	5	PALADIO Pd	30	ESTAÑO Sn	5
PLOMO Pb	200	MER <i>C</i> URIO Hg	0,001	CINC Zn	120
BISMUTO Sb	5	SELENIO Se	<0,001	FÓSFORO P	5000
ARSENI <i>CO</i> As	<1 mg/Kg	TELURIO Te	<1	LANTANO La	220 mg/Kg
CERIO Ce	270	PRASEODIMIO Pr	9	NIOBIO Nb	11
SAMARIO Sm	4	EUROPIO Eu	0,5	GADOLINIO Gd	0,5
TERBIO Tb	0,5	ITRIO Y	3	DISPROSIO Dy	0,5
HOLMIO Ho	0,5	ERBIO Er	0,5	TÁNTALO Ta	12
YTERBIO Yb	0,5	LUTECIO Lu	0,5	ESCANDIO Sc	7
PLATINO Pt	< 1	INDIO In	<1	BORO Br	1900
GALIO Ga	150	TULIO Tm	0,5		

ANÁLISIS POR ABSORCIÓN ATÓMICA DE ROCA MINERAL DISPONIBLE PARA LOS PRODUCTORES A UN BAJO COSTO QUE PUEDE SER USADA PARA PREPARAR BIOFERTILIZANTES.

Silicio (si)	59 %	Neodimio (Nd)	21 ppm
Hierro (Fe)	6 %	Praseodimio (Pr)	20 ppm
Magnesio (Mg)	2.5 %	Galio (Ga)	17 ppm
Azufre (S)	2 %	Cadmio (Cd)	17 ppm
Potasio (K)	1.3 %	Escandio (Sc)	10 ppm
Sodio (Na)	1.2 %	Plomo (Pb)	10 ppm
Fòsforo (P)	0.1 %	Molibdeno (Mo)	13 ppm
Calcio (Ca)	2.2 %	Arsénico (As)	6 ppm
Titanio (Ti)	0.5 %	Cromo (Cr)	8.6 ppm
Estroncio (Sr)	0.16 %	Litio (Li)	6.3 ppm
Bario (Ba)	0.1 %	Hafnio (Hf)	3.7 ppm
Cobre (Cu)	327 ppm	Cesio (Cs)	2.1 ppm
Vanadio (V)	156 ppm	Gadolinio (Gd)	2.0 ppm
Zirconio (Zr)	144 ppm	Holmio (Ho)	2.0 ppm
Manganeso (Mn)	9 ppm	Disprosio (Dy)	1.9 ppm
Zine	78 ppm	Uranio (U)	1.8 ppm
Flùor (F)	500 ppm	Yodo (I)	1.7 ppm
Cerio (Ce)	68 ppm	Selenio (Se)	1.6 ppm
Rubidio (Rb)	42 ppm	Bromo (Br)	1.4 ppm
Cloro (Cl)	40 ppm	Europio (Eu)	1.1 ppm
Lantano (La)	33 ppm	Estaño (Sn)	0.1 ppm
Níquel (Ni)	30 ppm		
Boro (B)	10 ppm		

FUENTE: Fundación Juquira Candiru. Sebastián Pinheiro. RS. Brasil FUENTE: Xavier Lazo. Fundación AMBIO/ San José. Costa Rica. Abril 2002 Adaptación: Jairo Restrepo Rivera.

COMPOSICIÓN QUÍMICA PROMEDIA DE BASALTO Y GRANITO DE ACUERDO A WEDEPHOL (1967)

ELEMENTOS	BASALTO	GRANITO
SiO ₂	49,50%	72,97%
TiO ₂	2,10%	0,29%
Al ₂ O ₃	14,95%	13,80%
Fe ₂ O ₃	3,70%	0,82%
FeO	8,70%	1,40%
MnO	0,19%	0,06%
MgO	6,80%	0,39%
CaO	9,60%	1,03%
Na ₂ O	2,85%	3,22%
K ₂ O	1,15%	5,30%
P ₂ O ₅	0,38%	0,16%
Mn	1500 ppm	390 ppm
Cu	87 ppm	8 ppm
Zn	105 ppm	39 ppm
В	5 ppm	10 ppm
Мо	1,5 ppm	1,3 ppm
Cr	220 ppm	4 ppm
Со	48 ppm	1 ppm
Ni	200 ppm	4,5 ppm
Sr	465 ppm	100 ppm
Ва	330 ppm	840 ppm

Wedepohl, K.H., 1967: Geochemie. In: BRINKMANN, R (Hrsg.): Lehrbuch der allgemeinen Geologie, Bd. 3,548-606. Verlag Ferdinand Enke, Stuttgart.

RESULTADOS QUE SE OBTIENEN CON FERTILIZANTES A BASE DE ELEMENTOS TIERRAS RARAS (ETR)

Cuando los fertilizantes ETR son utilizados en la producción agropecuaria:

- Hay un incremento entre el 6 y 15 % en la producción de granos, incluyendo el arroz, trigo, cacahuate y soya.
- Para los cultivos de frutas y vegetales, el incremento de la producción oscila entre el 5 y el 26 %.
- En los cultivos de frutas, remolacha y caña de azúcar se verifica un incremento en la cantidad de azúcares entre el 1 y 5 %.
- En las frutas se destaca un aumento en la cantidad de vitamina C.
- En la soya hay un aumento en la cantidad de proteína y aceite.
- En el algodón hay aumento en la resistencia, cantidad y el largo de la fibra.
- Finalmente, las plantas son más resistentes a las altas temperaturas y a las sequías.
- En los animales, aumenta el índice de crías que sobreviven, se incrementa el peso, hay un mayor aprovechamiento de los concentrados y
- en ovejas la producción de lana es más abundante.

ALGUNOS BENEFICIOS QUE SE LOGRAN CON LA REMINERALIZACIÓN DE LOS SUELOS A PARTIR DE LA UTILIZACIÓN DE HARINA DE ROCAS

- 1 •Aporte gradual de nutrientes (macro y micronutrientes) importantes para la nutrición mineral de los cultivos
- 2 •Aumento de la disponibilidad de dichos nutrientes en los suelos cultivados
- **3** •Aumento de la producción
- 4 •Reequilibrio del pH del suelo
- 5 •Aumento de la actividad de microorganismos y de lombrices
- $\underline{\mathbf{6}}$ •Aumento de la cantidad y calidad del humus
- 7 •Control de la erosión del suelo a partir del mejor desarrollo de las plantas cultivadas y del aumento de la materia orgánica del suelo
- 8 •Aumento de la reserva nutricional del suelo
- 9 •Aumento de la resistencia de las plantas contra la acción de insectos, enfermedades, sequías y heladas, debido al estímulo de su estado nutricional
- 10 •Eliminación de la dependencia de fertilizantes y venenos, cuya producción exige un elevado consumo de energía

TRATAMIENTO DE SEMILLAS CON HARINA DE ROCAS A BASE DE LOS ELEMENTOS TIERRAS RARAS (ETR o REE, EN INGLES)

ELEMENTO	SIMBOLO
LANTANO	La
CERIO	Се
PRASEODIMIO	Pr
NEODIMIO	Nd
PROMETIO	Pm
SAMARIO	Sm
EUROPIO	Eu
GADOLINIO	Gd
TERBIO	Tb
DISPROSIO	Dy
HOLMIO	Но
ERBIO	Er
TULIO	Tm_
YTERBIO	Yb
LUTECIO	Lu

LA APLICACIÓN DE ABONOS CON ELEMENTOS TIERRAS RARAS EN LA AGRICULTURA FUE DESARROLLADA EN LA CHINA, SOLO EN 1997 FUERON CONSUMIDAS 5 MILLONES DE TONELADAS DE FERTILIZANTES CON "ETR". ESTA CANTIDAD FUE EMPLEADA EN EL TRATAMIENTO DE 6,68 MILLONES DE HECTÁREAS CULTIVADAS.

CROMATOGRAMAS DEL LODO DE DOS BIOFERTILIZANTES SENCILLOS ENRIQUECIDOS CON HARINA DE ROCAS

Cromatograma del lodo del biofertilizante sencillo, enriquecido con una multimezcla de 3 kilos de harina de rocas.

Cromatograma del lodo del biofertilizante sencillo, enriquecido con 3 kilos de harina de rocas de origen basáltico.

CROMATOGRAMAS DE LA ADULTERACIÓN DE BIOFERTILIZANTES Y HARINA DE ROCAS CON ABONO QUÍMICO

Análisis de dos biofertilizantes supermagro adulterados con urea.

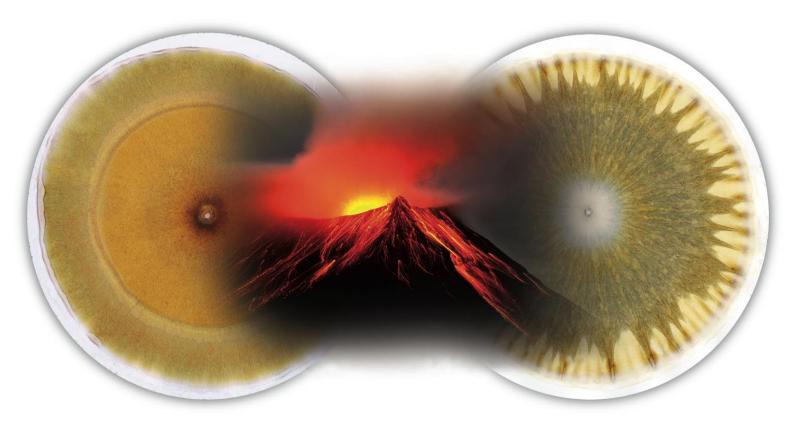
Análisis de harina de rocas en forma de peles adulterada con abono químico N-P-K triple 15.

CROMATOGRAMAS DE FOSFITOS Y HARINA DE ROCAS

Fosfitos bioactivados con biofertilizantes para revestir semillas.

Multimezcla de harina de rocas bioactivadas con biofertilizantes para revestir semillas.

COMPARACIÓN ENTRE TRES CROMATOGRAMAS DE FOSFITOS*



Fosfito bioactivado con biofertilizantes 72 horas después.

Fosfito bioactivado con biofertilizantes 96 horas después.

^{*} Los fosfitos es un preparado que se hace con harina de huesos calcinados mezclado con cascarilla de arroz mediante un proceso de combustión incompleta.

COMPARACIÓN ENTRE 2 CROMATOGRAMAS DE CENIZAS VOLCÁNICAS SIN Y CON ACTIVIDAD MICROBIOLÓGICA (Volcán Tungurahua)



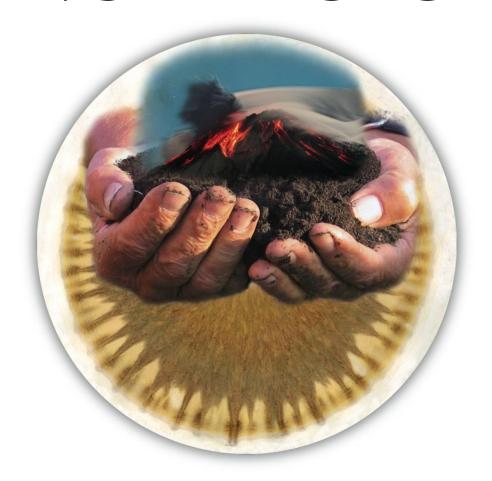
Cenizas de la penúltima erupción del volcán tungurahua año 2009 sin actividad microbiológica. Cenizas de la penúltima erupción del volcán tungurahua año 2009 activadas con microorganismos.

CROMATOGRAMAS DE GALLINAZA TRATADA DIRECTAMENTE CON HARINA DE ROCAS EN LA FOSA DE RECOLECCIÓN

Gallinaza tratada con harina de rocas durante las primeras 10 semanas de postura de las aves. Gallinaza tratada con harina de rocas durante las primeras 22 semanas de postura de las aves.

CROMATOGRAMAS DE UNA GALLINAZA TRATADA CON HARINA DE ROCAS Y UN ABONO ORGÁNICO EN PROCESO

Gallinaza tratada directamente con harina de rocas durante 30 semanas en la fosa de recolección. Abono orgánico elaborado con gallinaza tratada con harina de rocas 3 meses después.



NUTRICION

CULTIVOS

DESARROLLLO DE UNA PLANTA BAJO LAS CONDICIONES NUTRICIONALES DE LA AGRICULTURA ORGÁNICA

75% AGUA

La toman gratis de las lluvias y del medio donde están

25% MATERIA SECA

LA

CONSTIT UYEN

48

ELEMEN

TOS

(Temporal-Riego)
Aproximadamente 22,5% la constituyen solo 4 elementos y los pueden tomar gratis del aire y del agua

Aproximada mente 2,5% la

constituyen 44

elementos

y los

pueden tomar v

procesar del suelo Aproximadame nte 2% la constituyen 8 elementos

Aproximadamen te 0,5% la

constituyen 36 elementos

CARBONO-

(C)=10,65% HIDROGENO-

(H)=1,55%

OXIGENO-

(O)=9,95% NITROGENO:--

Magnesio-Sodio-(M)=0.35 Azufre-Cloro-

Fosforo-Silicio

<u>20</u>

Litio-Vanaio-Cobre-Molibdemo-Plata-Cromo-Zinc-Selenio-Estroncio-Yodo-Cadmio-

Manganeso-Boro-Fluor-

16

Betralite Blomo-Stequel Disprosio-Europio-Escandio-

ARubidio Cheice Bation Estaño-

Praseodimio-Samario-

EJEMPLO DEL EFECTO SISTEMICO, FUNCIONAL Y DINAMICO DE CINCO ELEMENTOS DE LA TABLA PERIODICA EN LA NUTRICION DE LAS PLANTAS

JICA 1
28 funciones Jacob Min-Cu-B-Mo-Co **NODULACION** Y FIJACION **DEL N** Mo

EJEMPLO DE LA INFLUENCIA DE CINCO ELEMENTOS DE LA TABLA PERIODICA EN ALGUNAS FUNCIONES NUTRICIONALES DE LAS PLANTAS

íntesis			
11110515	Fotosíntesis	Síntesis de hormonas	Síntesis proteína
lación y fijación N	Síntesis clorofila	Metabolismo nitrógeno	Síntesis vitaminas
lador respiración	Nodulación y fijación N	Metabolismo azufre	Metabolismo nitrógeno
lador maduración lo acido cítrico	Regulador respiración	Nodulación y fijación N	Nodulación y fijación N
zación Ca-P-Mg	Activación enzimática	Activación enzimática	Calidad cosecha
ad cosecha	Calidad cosecha	Calidad cosecha	
cción de nitratos y os	Reducción de nitratos y nitritos		
cción contra			ra ndirú
	ador respiración ador maduración o acido cítrico zación Ca-P-Mg ad cosecha cción de nitratos y os	ador respiración ador maduración o acido cítrico zación Ca-P-Mg Activación enzimática Calidad cosecha Cción de nitratos y nitritos cción contra	ador respiración Nodulación y fijación N Metabolismo azufre Regulador respiración Nodulación y fijación N acido cítrico Zación Ca-P-Mg Activación enzimática Calidad cosecha Calidad cosecha Reducción de nitratos y nitritos

Activación enzimática

Calidad final de cosecha

ANALISIS DE PULPA Y SEMILLA DEL FRUTO DE AGUACATE

Ag= Plata	S	Fe= Hierro	P. S	Pb= Plomo	P.S
Al= Aluminio	P.S	Gs= Gadolinio	S	Pr= Praseodimio	S
As= Arsénico	P.S	K= Potasio	P.S	Sc= Escandio	P.S
Ba= Bario	P.S	La= Lantano	P.S	Se= Selenio	P.S
Ca= Calcio	P.S	Mg= Magnesio	P.S	Sm= Samario	S
Ce= Cerio	P.S	Mn= Manganeso	P.S	Sn= Estaño	S
Co= Cobalto	P.S	Mo= Molibdeno	P.S	Sr= Estroncio	PS
Cr= Cromo	P.S	Na= Sodio	P.S	Ti= Titanio	P.S
Cu= Cobre	P.S	Nd= Neodimio	P.S	Y= Itrio	P.S
Dy= Disprosio	\mathbf{S}	Ni= Níquel	P.S	Z= Zinc	P.S
Eu= Europio	S	P= Fosforo	P.S		

Jairo Restrepo Rivera Fundación Juquira Candirú

ELEMENTOS QUE SOLO SE ENCUENTRAN EN LA SEMILLA

Ag= Plata

Dy= Disprosio

Eu= Europio

Gd= Gadolinio

Pr= Praseodimio

Sm= Samario

Sn= Estaño

ELEMENTOS QUE SE ENCUENTRAN PREDOMINANDO EN LA SEMILLA POR ENCIMA DE LA PULPA

Fe= Hierro

Mn= Manganeso

Na=Sodio

Nd= Neodimio

Ni= Níquel

Pb= Plomo

Sc= Escandio

Sr= Estroncio

Ti= Titanio

Y= Itrio

CONTENIDO DE ELEMENTOS MINERALES EN DIFERENTES PARTES DEL FRUTO DE AGUACATE (CULTIVAR HASS)

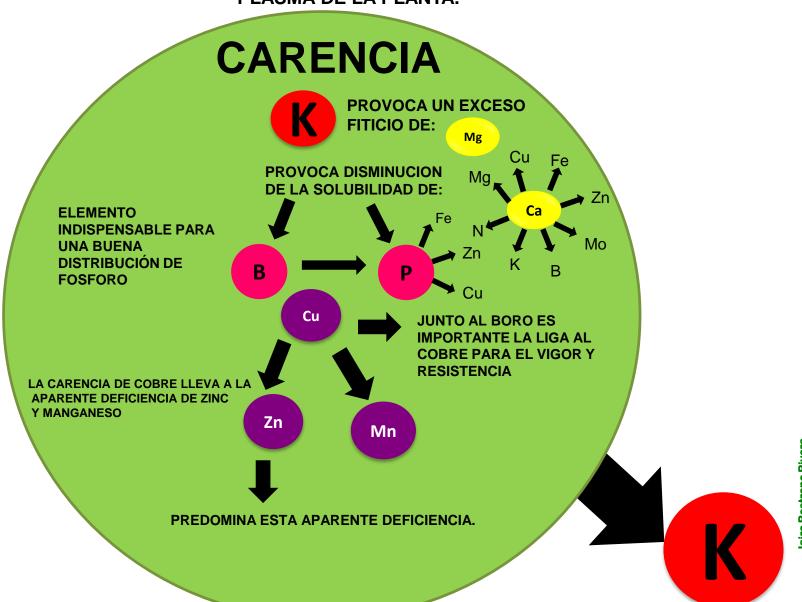
Partes del	Elementos minerales y concentración en la materia seca ppm														
fruto	N	P	K	Ca	Mg	S	Cl	Fe	Cu	Mn	Zn	В	Na	Al	Mo
Epidermis	0.7 6	0.134	1.16	0.036	0.09 7	0.077 7	0.0 9	18. 4	6.68	3.9	9.0 6	19. 1	32.8	20. 6	0.96
Pulpa	1.3 7	0.240 8	2.14	0.041	0.13 7	0.192 1	0.0 4	34. 7	9.84	6.6	22. 8	19. 9	69.3	14	0.63
Semilla	0.8 4	0.147 7	1.21	0.022	0.12 1	0.1184	0.0 3	21. 1	5.73	4.4	9.2 4	12. 3	4.8	10. 5	1.14
Testa	1.8 1	0.161 8	1.04	0.216	0.42 2	0.145 1	0.0 3	50. 8	33.8	75. 6	32. 4	42. 3	111.4	ND	ND

Fuente: NUTRICION DEL AGUACATE, PRINCIPIOS Y APLICACIONES

Samuel Salazar-García, 2002

FERTILIZACIÓN QUÍMICA Y VENENOS

Destrucción de la tierra para el cultivo del maíz convencional.



Elementos minerales afectados por la aplicación de abonos químicos convencionales y correciones de cal.

OBSERVACIONES BASICAS A NIVEL DE CAMPO QUE PUEDEN AYUDAR CON EL DIAGNOSTICO PARA DETECTAR DEFICIENCIAS EN LOS CULTIVOS

- DEFICIENCIAS PRODUCIDAS POR PERIODOS SECOS.
 BORO-ZINC-HIERRO-MANGANESO-COBRE -AZUFRE-NITROGENO.
- DEFICIENCIAS PRODUCIDAS POR PERIODOS LLUVIOSOS O EXCESO DE HUMEDAD.. POTASIO-MAGNESIO-FOSFORO-CALCIO.
- DEFICIENCIAS PROVOCADAS POR PERIODOS FRIOS. NITROGENO-POTASIO.
- CAIDA ACENTUADA DE HOJAS EN EPOCAS DE FLORACION.
 DEFICIENCIA DE: POTASIO (periodo seco), MAGNESIO (periodo lluviosos).
- NINGUNA O POCA FLORACION .
 DEFICIENCIA DE: BORO-COBRE-NITROGENO-ZINC-MANGANESO-FOSFORO.
- FORMACION CLOROTICA Y CAIDA DE BOTONES Y FLORES . DEFICIENCIA DE: BORO O HIERRO.
- PUDRICION DE LAS PUNTAS DE LOS BOTONES. DEFICIENCIA DE: CALCIO.
- MARCHITAMIENTO DE FLORES SIN LA FORMACION DE FRUTOS. DEFICIENCIA DE: POTASIO O CALCIO.
- CAIDA PREMATURA DE FRUTOS. FRUTOS RECIEN FORMADOS O MUY PEQUEÑOS Y COLORACION OSCURA. DEFICIENCIA DE: BORO.
- FRUTOS CON MAS DE 34 DE FORMACION. DEFICIENCIA DE: COBRE.

LA MANIFESTACIÓN DE UNA DEFICIENCIA DE UN ELEMENTO EN UN CULTIVO, EN MUCHAS OCASIONES PUEDE SER APARENTE, DEBIDO PRINCIPALMENTE A LAS CONSTANTES RELACIONES RECIPROCAS DE LOS MINERALES EXISTENTES EN LA SOLUCIÓN DEL SUELO O PLASMA DE LA PLANTA.

Jairo Restrepo Rivera Fundación Juquira Candirú

NUTRICION

ABONOS ORGÁNICOS

ABONOS VERDES
BOCASHI
COMPOSTAS

BIOFERTILIZANTES

FORMULACIONES

CAPTURA DE MICROORGANISMOS NATIVOS (CMN) O MANTILLO DE BOSQUE

INGREDIENTES:

- 2 COSTALES DE HOJARASCA DE BOSQUE.
- 1 COSTAL DE SALVADO DE ARROZ.
- 2 GALONES DE MELAZA.
- 2 GALONES DE EM (opcional).

TIEMPO – 1 MES DE FERMENTACIÓN, TAPADO HERMETICAMENTE.

FORMULA PARA REACTIVAR LOS MICROORGANISMOS NATIVOS

INGREDIENTES:

- 10-KILOS DE SILO DE CMN (hojarasca).
- 100-LITROS DE SUERO.
 - 2 GALONES DE MELAZA.
 - 1 GALON EM (opcional).
- TIEMPO 30 DIAS DE FERMENTACION.
- PREPARACION: SENCILLA, SIN SULFATOS.

ENSILAJE O FERMENTADO DE PASTO PICADO

INGREDIENTES:

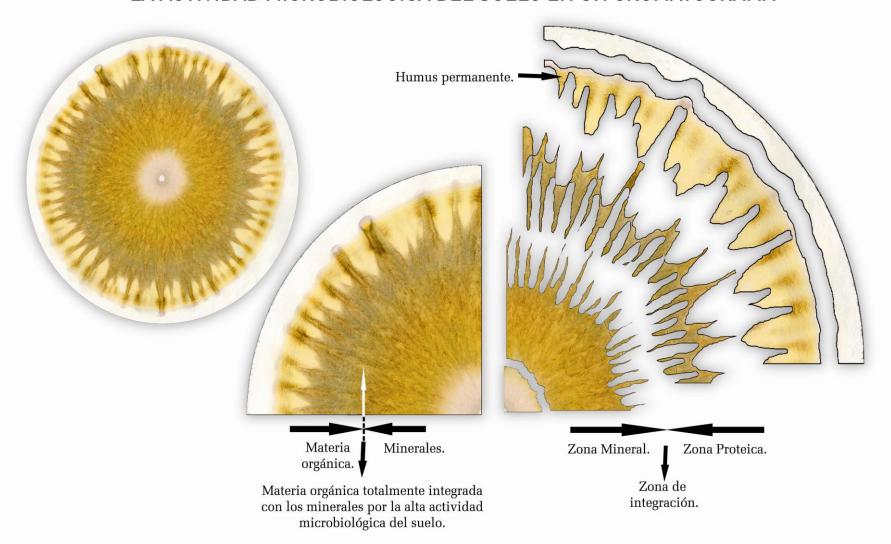
- 20 KILOS DE PASTO BIEN PICADO.
- 80 KILOS DE SALVADO DE ARROZ.
 - 2 GALONES DE MELAZA.
 - 1 GALON DE EM (opcional).

TIEMPO – 1 MES DE FERMENTACIÓN Y TAPADO HERMETICAMENTE.

FORMULA PARA REACTIVAR Y ENRIQUECER CON MINERALES EL SILO DE PASTO FERMENTADO

INGREDIENTES:

- 10 KILOS DE SILO DE PASTO FERMENTADO.
- 100 LITROS DE SUERO.
 - 2 GALONES DE MELAZA.
 - 1 GALON DE EM (opcional).


TIEMPO PARCIAL DE FERMENTACION 4 DIAS.

- -TAPADO HERMETICAMENTE.
- -DESPUÉS DE LOS 4 DIAS, SE AGREGAN LOS SULFATOS Y UN GALON DE MELAZA DISUELTA EN AGUA.

Nikolaĭ Alesandrovich Krasil'nikov Cientifico Ruso en microbiologia de suelo

INTEGRACIÓN IDEAL DE LOS MINERALES Y LA MATERIA ORGÁNICA POR LA ACTIVIDAD MICROBIOLÓGICA DEL SUELO EN UN CROMATOGRAMA

BENEFICIOS NUTRITIVOS DE VERDURAS BIOLOGICAS

	Calcio	Magnesio	Potasio	Sodio	Manganeso	Hierro	Cobre
Lechuga							
Biológico convencional	40.5 15.5	60.0 14.8	99.7 29.1	8.6 0.0	60.0 2.0	227 10	69.0 3.0
Tomate							
Biológico Convencional Espinaca	71.0 16.0	43.3 13.1	176.5 53.7	12.2 0.0	169.0 1.0	516 9	60.0 3.0
Biológico Convencional	23.0 4.50	59.2 4.5	148.3 58.6	6.5 0.0	68.0 1.0	1938 1	53.0 0.0
Frijoles Biológico	96.0	203.9	257.0	69.5	117.0	1585	32.0
Convencional	45.5	46.9	84.0	0.8		19	5

Adaptado por Jairo Restrepo Rivera Abril 2002

REFRACTIVE INDEX OF CROP JUICES -- CALIBRATED IN % SUCROSE OR "BRIX

efractometers are easy to use, even for an inexperienced operator. To make a reading, place 2 to 3 drops of the liquid sample on the prism surface, close the cover & point toward any ght source. Focus the eyepiece by turning the ring to the right or left. Locate the point on the graduated scale where the light & dark fields meet. Read the % sucrose (solids content) in the scale. This chart represents values for juices of mature crops.

or reference, pure (distilled) after reads 0 "Brix.

lithin a given species of plant, to crop with the higher fractive index will have a ligher sugar content, higher protein intent and a greater specific ravity or density. This adds p to a sweeter tasting, more dinerally nutritious fond naximum nutritional value) ith lower nitrate and water intent and better storage tributes.

reps with higher Brix will coduce more alcohol from remembed sugars and he more sistant to insects, thus sulting in decreased secticide usage. For insect sistance, maintain a Brix of 12 r higher in the juice of the aves of most plants. Crops ith a higher solids content ill have a lower freezing oint & therefore be less prone frost damage.

his reading can also indicate ill fertility needs. If soil utrients are in the best balance are made available (by icrobes) upon demand by lants, readings will be higher.

	Poor	AVERAGE	GOOD	EXCELLENT
FRUITS				
Apples	6	10	14	18+
Avocados	4	6	8	10+
Bananas	8	10	12	14+
Cantaloupe	8	12	14	16+
Casaba ·	8	10	12	14+
Cherries	6	8	14	16+
Coconut	8	10	12	14+
Grapes	8	12	16	20+
Grapefruit	6	10	14	18+
Honeydew	8	10	12	14+
Kumquat	4	6	8	10+
Lemons	4	6	8	12+
Limes	4	6	10	12+
Mangos	4	6	10	14+
Oranges	6	10	16	20+
Papayas	6	10	18	22+
Peaches	6	10	14	18+
Pears	6	10	12	74+
Pineapple	12	14	20	22+
Raisins	60	70	75	80+
Raspberries	6	8	12	14+
Strawberries	6	10	14	16+
Tomatoes	4	6	8	12+
Watermelon	8	12	14	16+
GRASSES		199		
Alfalfa	4	8	16	22+
Grains	6	10	14	18+
Sorghum	6	10	22	30+

	POOR	AVERAGE	COOD	EXCELLENT
VEGETABLES				
Asparagus	2	4	6	8+
Beets	6	8	10	12+
Bell Peppers	4	6	8	12+
Broccoli	6	8	10	12+
Cabbage	6	8	10	12+
Carrots	4	6	12	18+
Cauliflower	4	6	8	10+
Celery	4	6	10	12+
Corn Stalks	4	8	14	20+
Corn (Young)	6	10	18	24+
Cow Peas	4	6	10	12+
Endive	4	6	8	10+
English Peas	8	10	12	14+
Escarole	4	6	8	10+
Field Peas	4	6	10	12+
Green Beans	4	6	8	10+
Hot Peppers	4	6	8	10+
Kohlrabi	6	8	10	12+
Lettuce	4	6	8	10+
Onions	4	6	8	10+
Parsley	4	6	8	10+
Peanuts	4	6	8	10+
Potatoes, Irish	3	5	7	8+
Potatoes, Red	3	5	7	8+
Potatoes, Sweet	6	8	10	14+
Romaine	4	6	8	10+
Rutabagas	4	6	10	12+
Squash	6	8	12	14+
Sweet Corn	6	10	18	24+
Turnips	4	6	8	10+

ontact us for a complete line of equipment for biological farming & composting:

PIKE AGRI-LAB SUPPLIES, INC.

"We are monitoring tomorrow's environment today,"

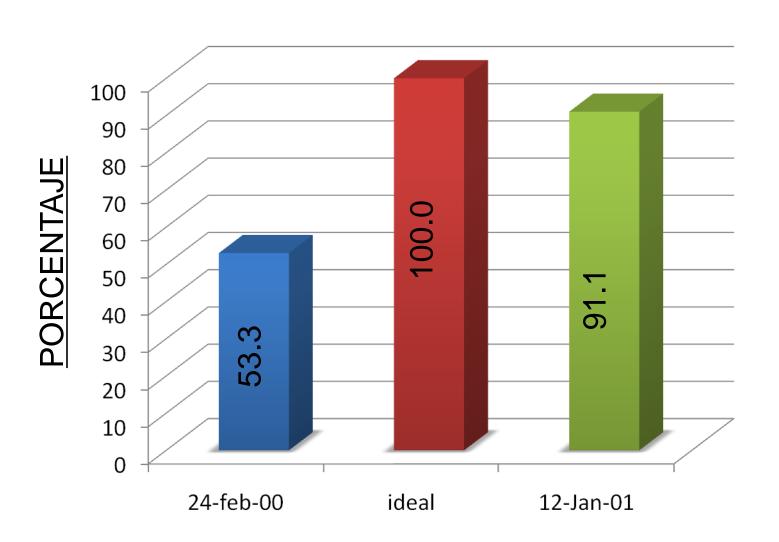
154 Claybrook Rd • PO Box 67 Jay, Maine 04983 Phone 207-897-9267 • Fax -9268

Índice de Refracción de Jugos de Cosecha-Calibrados % Brix

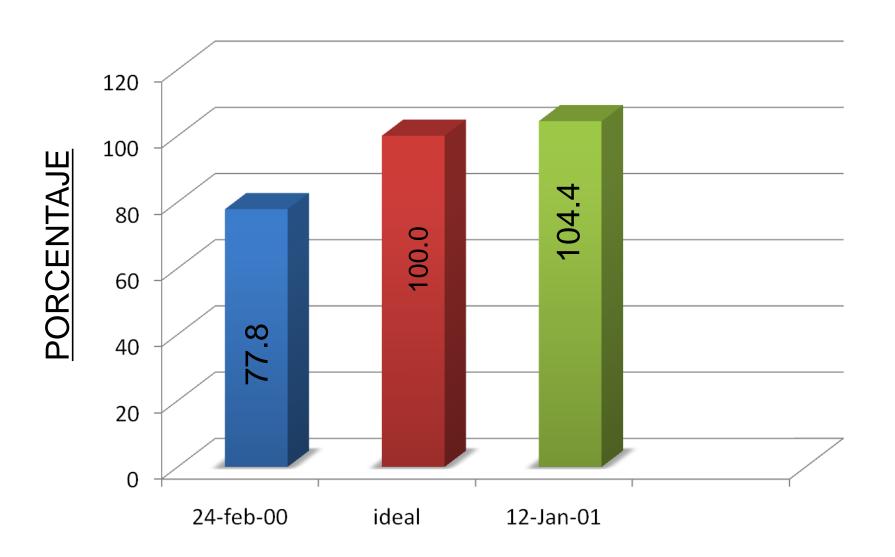
	Poco	Medio	Bueno	Exelente
Frutas				
Manzana	6	10	14	18
Aguacate	4	6	8	10
Banano	8	10	12	14
Arandanos	10	14	16	20
Melon	8	12	14	16
Cerezas	6	8	14	16
Сосо	8	10	12	14
Uvas	8	12	16	20
Pomelo	6	10	14	18
Limones	4	6	8	12
Mangos	4	6	10	14
Naranjas	6	10	16	20
Papayas	6	10	18	22
Durazno	6	10	14	18
Peras	6	10	12	14
Piña	12	14	20	22
Pasas	60	70	75	80
Frambuesas	6	8	12	14
Fresas	6	10	14	16
Tomates	4	6	8	12
Sandia	8	12	14	16
Pastos				
Alfalfa	4	8	16	22
Granos	6	20	14	18

Índice de Refracción de Jugos de Cosecha-Calibrados % Brix

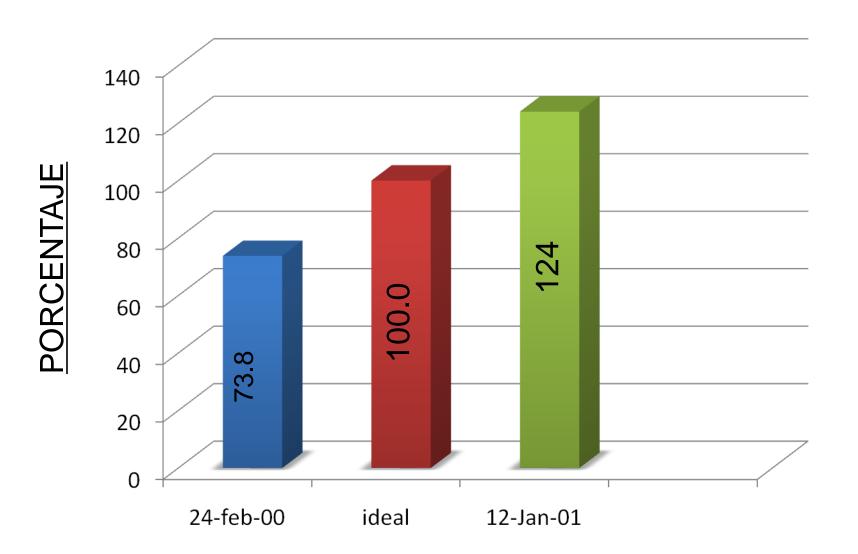
	Poco	Medio	Bueno	Exelente
Vegetales				
Esparragos	2	4	6	8
Pimienta	6	8	10	12
Brocoli	4	6	8	12
Col	6	8	10	12
Zanahoria	4	6	12	18
Coliflor	4	6	8	10
Apio	4	6	10	12
Tallos de Maiz	4	8	14	20
Maiz	6	10	18	24
Guisantes	4	6	10	12
Endivias	4	6	8	10
Guisantes ingleses	8	10	12	14
Escarola	4	6	8	10
Guisantes Forrajeros	4	6	10	12
Habas verdes	4	6	8	10
Pimientas picantes	4	6	8	10
Colinabo	6	8	10	12
Lechuga	4	6	8	10
Cebolla	4	6	8	10
Perejil	4	6	8	10
Cacahuetes	4	6	8	10
Papas irlandesas	3	5	7	8
Papas rojas	3	5	7	8
Calabaza	6	8	12	14
Maiz dulce	6	10	18	24
Nabos	4	6	8	10


CALDOS MINERALES

Consisten en la preparación de una serie de mezclas de elementos minerales, donde predominan principalmente algunos sulfatos y sales; los cuales se destinan para nutrir, prevenir y estimular la bio-protección y controlar el avance de enfermedades en el cultivo del aguacate, actualmente destacamos preparación y utilización de:


CALDOS

- Caldo bordelés preparado al 1%, preparación en frio.
- Caldo bordelés preparado al 2%, Preparación en frio.
- Caldo Visosa, preparación en frio.
- Caldo con bicarbonato de sodio, preparación en frio.
- Caldo sulfocálcico, preparación normal con calor.
- Caldo silicosulfocalcico enriquecido con ceniza, preparación con calor.
- Caldo silicosulfocalcico enriquecido con ceniza y jabón, preparación con calor.
- Caldo ceniza preparado con jabón y en algún caso enriquecido con aceite vegetal o mineral.
- Caldo sulfocálcico enriquecido con diatomeas, preparación con calor.
- Caldo sulfocálcico enriquecido con diatomeas e hidróxido de potasio en caliente.
- Caldo sulfocálcico enriquecido con diatomeas, preparación en frio al momento de la aplicación.


NIVELES DE ZINC

NIVELES DE FOSFORO

NIVELES DE NITROGENO

MEZCLA DE CALDOS FRIOS Y CALIENTES

Algunos caldos que fueron preparados con calor, una vez estén en reposo absoluto y bien fríos, se pueden mezclar con otros caldos preparados en frio. Dentro de esas preparaciones destacamos:

MEZCLAS

- Caldo bordelés preparado al 1% mezclado con caldo sulfocálcico.
- Caldo bordelés preparado al 2% mezclado con caldo sulfocálcico.
- Caldo bordelés preparado al 1% mezclado con permanganato de potasio.
- Caldo Visosa mezclado con caldo sulfocálcico.
- Caldo sulfocálcico enriquecido con sulfato de zinc.
- Finalmente, algunos caldos por su compatibilidad también se pueden mezclar con los biofertilizantes para ser aplicados en los cultivos, principalmente los que son elaborados a base de azufre.

PASTAS MINERALES

Resultan principalmente de la mezcla y el reciclaje de la pasta sulfocálcico, cuando se preparan los caldos minerales a base de azufre, cal, ceniza, diatomeas e hidróxido de potasio. Entre las cuales destacamos:

PASTAS

- Pasta bordelés.
- Pasta sulfocálcica.
- Pasta silicosulfocálcica.
- Pasta sulfocálcica enriquecida con diatomeas.
- · Pasta sulfocálcica enriquecida con sulfato de zinc.
- Pasta sulfocálcica enriquecida con sulfato de zinc y fosfitos.
- Reciclaje de pasta sulfocálcica para un nuevo caldo.

HARINA DE HUESOS Y FOSFITOS

Vasili Vasílievich Dokuchayev (1840-1903) Padre de la ciencia del suelo en Rusia

Vladimir Ivanovich Vernadsky (1863-1945) Físico y matemático Fundador de la geoquímica y biogeoquímica en Rusia

